BIOL 565 Research and Communication Skills in Biology

selected resources

Web of Science
InCites™ Journal Citation Reports®
Google Scholar
Canadian Institutes of Health Research
Natural Sciences and Engineering Research Council of Canada
Social Sciences and Humanities Research Council of Canada
ENDNOTE
EndNote | Clarivate Analytics
Portage

kmatrix@uvic.ca
danielbm@uvic.ca
Outline

• *Web of Science*
 versus...
 • *Google Scholar*

• Follow the citation / reference trail

• Biology dictionaries / encyclopaedias

• Citations / References software

• Research Data Management Planning

Hertz, E. (2016). *The drivers and implications of spatial and temporal variation in the feeding ecology of juvenile Chinook Salmon.* (PhD)

Kennedy, K.T.M. (2016). *Exotic vs. native: Global and urban investigations of leaf litter decay in streams.* (MSc)

Suraci, J. (2016). *Fear in wildlife food webs: large carnivore predation risk mediates the impacts of a mammalian mesopredator.* (PhD)

Toews, M. (2016). *Managing human footprint with respect to its effects on large mammals: Implications of spatial scale, divergent responses and ecological thresholds.* (MSc)
<table>
<thead>
<tr>
<th>RESEARCH FIELDS</th>
<th>No. OF PAPERS</th>
<th>No. OF CITATIONS</th>
<th>CITATIONS PER PAPER</th>
</tr>
</thead>
<tbody>
<tr>
<td>MOLECULAR BIOLOGY & GENETICS</td>
<td>441,547</td>
<td>10,551,074</td>
<td>23.90</td>
</tr>
<tr>
<td>IMMUNOLOGY</td>
<td>244,660</td>
<td>4,587,635</td>
<td>18.75</td>
</tr>
<tr>
<td>NEUROSCIENCE & BEHAVIOR</td>
<td>492,990</td>
<td>8,693,441</td>
<td>17.63</td>
</tr>
<tr>
<td>SPACE SCIENCE</td>
<td>142,844</td>
<td>2,504,182</td>
<td>17.53</td>
</tr>
<tr>
<td>BIOLOGY & BIOCHEMISTRY</td>
<td>701,873</td>
<td>11,367,999</td>
<td>16.20</td>
</tr>
<tr>
<td>MICROBIOLOGY</td>
<td>195,182</td>
<td>2,914,828</td>
<td>14.93</td>
</tr>
<tr>
<td>CHEMISTRY</td>
<td>1,631,432</td>
<td>22,773,683</td>
<td>13.96</td>
</tr>
<tr>
<td>MULTIDISCIPLINARY</td>
<td>19,534</td>
<td>270,613</td>
<td>13.85</td>
</tr>
<tr>
<td>ENVIRONMENT/ECOLOGY</td>
<td>429,619</td>
<td>5,374,203</td>
<td>12.51</td>
</tr>
<tr>
<td>CLINICAL MEDICINE</td>
<td>2,589,800</td>
<td>32,381,665</td>
<td>12.50</td>
</tr>
<tr>
<td>PHARMACOLOGY & TOXICOLOGY</td>
<td>371,969</td>
<td>4,633,606</td>
<td>12.46</td>
</tr>
<tr>
<td>PSYCHIATRY/PSYCHOLOGY</td>
<td>380,753</td>
<td>4,567,667</td>
<td>12.00</td>
</tr>
<tr>
<td>GEOSCIENCES</td>
<td>422,272</td>
<td>4,991,186</td>
<td>11.82</td>
</tr>
<tr>
<td>Full Journal Title</td>
<td>Total Cites</td>
<td>Journal Impact Factor</td>
<td>Impact Factor without Journal Self Cites</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Physics of Life Reviews</td>
<td>1,327</td>
<td>13.840</td>
<td>13.000</td>
</tr>
<tr>
<td>BIOLOGICAL REVIEWS</td>
<td>9,669</td>
<td>11.615</td>
<td>11.513</td>
</tr>
<tr>
<td>PLOS BIOLOGY</td>
<td>26,893</td>
<td>9.797</td>
<td>9.624</td>
</tr>
<tr>
<td>eLife</td>
<td>15,730</td>
<td>7.725</td>
<td>7.393</td>
</tr>
<tr>
<td>BMC BIOLOGY</td>
<td>4,588</td>
<td>6.779</td>
<td>6.692</td>
</tr>
<tr>
<td>PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES</td>
<td>36,908</td>
<td>5.846</td>
<td>5.678</td>
</tr>
<tr>
<td>FASEB JOURNAL</td>
<td>42,242</td>
<td>5.498</td>
<td>5.398</td>
</tr>
<tr>
<td>BIOSCIENCE</td>
<td>15,467</td>
<td>5.378</td>
<td>5.259</td>
</tr>
<tr>
<td>PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES</td>
<td>44,463</td>
<td>4.940</td>
<td>4.727</td>
</tr>
<tr>
<td>BIOESSAYS</td>
<td>9,199</td>
<td>4.441</td>
<td>4.316</td>
</tr>
<tr>
<td>QUARTERLY REVIEW OF BIOLOGY</td>
<td>3,683</td>
<td>4.250</td>
<td>4.200</td>
</tr>
</tbody>
</table>
Web of Science

Select a database: Web of Science Core Collection

Basic Search

- chinook salmon OR Oncorhynchus tshawytscha
- juvenile OR young
- feeding OR feed OR eating
- spatial OR geospatial

Search
1. Using natural strontium isotopic signatures as fish markers: methodology and application
 By: Kennedy, BP; Blum, JD; Folt, CL; et al.
 CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES Volume: 57 Issue: 11 Pages: 2280-2292
 Published: NOV 2000

2. Turbidity reduces predation on migrating juvenile Pacific salmon
 By: Gregory, RS; Leving, CD
 Published: MAR 1998

3. Developing a broader scientific foundation for river restoration: Columbia River food webs
 By: Naiman, Robert J.; Alldredge, J. Richard; Beauchamp, David A.; et al.
 PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA
 Volume: 109 Issue: 52 Pages: 21201-21207 Published: DEC 26 2012

4. Repeated antipredator conditioning: a pathway to habituation or to better avoidance?
 By: Vilhunen, S
 JOURNAL OF FISH BIOLOGY Volume: 68 Issue: 1 Pages: 25-43 Published: JAN 2006

5. Interacting effects of density and temperature on body size in multiple populations of Chinook salmon
 By: Crozier, Lisa G.; Zabel, Richard W.; Hockersmith, Eric E.; et al.
 JOURNAL OF ANIMAL ECOLOGY Volume: 79 Issue: 2 Pages: 342-349 Published: MAR 2010

6. Persistent organic pollutants in outmigrant juvenile chinook salmon from the Lower Columbia Estuary, USA
 By: Johnson, Lyndal L.; Ylitalo, Gina M.; Sloan, Catherine A.; et al.
 SCIENCE OF THE TOTAL ENVIRONMENT Volume: 374 Issue: 2-3 Pages: 342-366 Published: MAR 15 2007
Search

Select a database Web of Science Core Collection

- chinook salmon OR Oncorhynchus tshawytscha
 - Title
- AND juvenile OR young
 - Title
- AND feeding OR feed OR food OR eating
 - Title
- AND spatial OR geospatial
 - Topic

Search
<table>
<thead>
<tr>
<th>Rank</th>
<th>Title</th>
<th>Authors</th>
<th>Journal</th>
<th>Volume</th>
<th>Issue</th>
<th>Pages</th>
<th>Published</th>
<th>Times Cited</th>
<th>Usage Count</th>
<th>Usage Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Food habits and marine survival of juvenile Chinook and coho salmon from marine waters of Southeast Alaska</td>
<td>Weitkamp, Laurie A.; Sturdevant, Molly V.</td>
<td>FISHERIES OCEANOGRAPHY</td>
<td>17</td>
<td>5</td>
<td>380-395</td>
<td>2008</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Continental-scale variability in the feeding ecology of juvenile Chinook salmon along the coastal Northeast Pacific Ocean</td>
<td>Hertz, Eric; Trudel, M.; Brodeur, R. D.; et al.</td>
<td>MARINE ECOLOGY PROGRESS SERIES</td>
<td>537</td>
<td></td>
<td>247-263</td>
<td>OCT 14 2015</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Mechanisms of drift-feeding behavior in juvenile Chinook salmon and the role of inedible debris in a clear-water Alaskan stream</td>
<td>Neuswanger, Jason; Wipfli, Mark S.; Rosenberger, Amanda E.; et al.</td>
<td>ENVIRONMENTAL BIOLOGY OF FISHES</td>
<td>97</td>
<td>5</td>
<td>489-503</td>
<td>MAY 2014</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Trophic pathways supporting juvenile Chinook and coho salmon in the glacial Susitna River, Alaska: patterns of freshwater, marine, and terrestrial food resource use across a seasonally dynamic habitat mosaic</td>
<td>Rine, Kristin M.; Wipfli, Mark S.; Schoen, Erik R.; et al.</td>
<td>CANADIAN JOURNAL OF FISHERIES AND AQUATIC SCIENCES</td>
<td>73</td>
<td>11</td>
<td>1626-1641</td>
<td>NOV 2016</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Food habits and marine survival of juvenile Chinook and coho salmon from marine waters of Southeast Alaska
LA Weitkamp, MV Sturdevant - Fisheries Oceanography, 2008 - Wiley Online Library
Abstract Little is known about the food habits of juvenile Chinook (Oncorhynchus tshawytscha) and coho (Oncorhynchus kisutch) salmon in marine environments of Alaska, or whether their diets may have contributed to extremely high marine survival rates for coho salmon from Southeast Alaska and much more modest survival rates for Southeast Alaskan Chinook salmon. To address these issues, we documented the spatial and temporal ...
Ban, N. 2010. Cumulative impact mapping... management and conservation... using Canada's Pacific waters...

Marine Policy 34 (5)

27 references

cited by 66 other items
follow the stream(s) / trail(s)...

Ban, N. 2010. Cumulative impact mapping... management and conservation... using Canada's Pacific waters... *Marine Policy* 34 (5)

(example of just) 3 other cites

(example of just) 3 references
Ban, N. 2010. Cumulative impact mapping... management and conservation... using Canada's Pacific waters... Marine Policy 34 (5)

Managing for cumulative impacts...

Halpern, B.S., R Fujita (2013)
...future directions in cumulative impact analysis

...risk to coastal seagrasses from cumulative threats

Cumulative environmental change...

Brown, CJ, Possingham, HP et al (2014)
...management effectiveness in cumulative impact mapping

Mapping cumulative human impacts...

Global map of human impact...

??? 19??

???
other literature databases

BioOne

PLoS - Public Library of Science

ScienceDirect (Elsevier)

Web of Science (ISI)

Zoological Record - Web of Science
Biology encyclopaedias & dictionaries

Dictionary of Animal Behaviour
Dictionary of Biology
Dictionary of Biochemistry and Molecular Biology
New Encyclopedia of Birds
Dictionary of Ecology
Encyclopedia of Evolution
Dictionary of Genetics
New Encyclopedia of Insects and their Allies
Encyclopedia of Mammals
Dictionary of Plant Sciences
New Encyclopedia of Reptiles and Amphibians
Encyclopedia of Underwater Life
Dictionary of Zoology

Encyclopedia of Life Sciences
<table>
<thead>
<tr>
<th>Software</th>
<th>Developer</th>
<th>First public release</th>
<th>Latest stable release date</th>
<th>Latest stable version</th>
<th>Cost (USD)</th>
<th>Free software</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aigaion</td>
<td>Aigaion developers</td>
<td>2005-01</td>
<td>2013-05-08</td>
<td>2.2</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>Bebop</td>
<td>ALaRI Institute</td>
<td>2007-11-08</td>
<td>2009-11-10</td>
<td>1.1</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>BibDesk</td>
<td>BibDesk developers</td>
<td>2002-04</td>
<td>2017-02-14</td>
<td>1.6.9</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>BibSonomy</td>
<td>University of Kassel</td>
<td>2006-01</td>
<td>2016-12-02</td>
<td>3.7.0</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>Bibus</td>
<td>Bibus developers</td>
<td>2004-06-03</td>
<td>2009-12-01</td>
<td>1.5.1</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>JabRef</td>
<td>JabRef developers</td>
<td>2003-11-29</td>
<td>2017-01-29</td>
<td>3.8.2</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>KBibTeX</td>
<td>KBibTeX developers</td>
<td>2005-08</td>
<td>2015-08-09</td>
<td>0.6</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>Pybiographer</td>
<td>pybiographer developers</td>
<td>1998-10-30 (0.2)</td>
<td>2014-11-30</td>
<td></td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>refbase</td>
<td>refbase developers</td>
<td>2003-06-03</td>
<td>2014-02-28</td>
<td>0.9.6</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>RefDB</td>
<td>refdb developers</td>
<td>2001-04-25</td>
<td>2007-11-05</td>
<td>0.9.9</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>Referencer</td>
<td>Referencer developers</td>
<td>2008-03-15</td>
<td>2014-02-27</td>
<td>1.2.2</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>Winkinx</td>
<td>Mark Grimshaw</td>
<td>2004-02</td>
<td>2014-08</td>
<td>4.2.2</td>
<td>Free</td>
<td>Yes</td>
</tr>
<tr>
<td>Zotero</td>
<td>Roy Rosenzweig Center for History and New Media at GMU</td>
<td>2006</td>
<td>2017-07</td>
<td>5.0.4 [8]</td>
<td>Free / Online storage free up to 300 MB / Additional storage space available</td>
<td>Yes</td>
</tr>
<tr>
<td>BibBase</td>
<td>Christian Fritz</td>
<td>2005-00</td>
<td>2013-07</td>
<td>v3</td>
<td>Free</td>
<td>No</td>
</tr>
<tr>
<td>CiteULike</td>
<td>Versity Limited</td>
<td>2004-11</td>
<td>?</td>
<td>?</td>
<td>Free</td>
<td>No</td>
</tr>
<tr>
<td>RefME</td>
<td>RefME</td>
<td>2014-00</td>
<td>Shut down on March 7, 2017</td>
<td></td>
<td>Free</td>
<td>No</td>
</tr>
<tr>
<td>Mendeley</td>
<td>Elsevier</td>
<td>2008-08</td>
<td>2017</td>
<td>1.17.10</td>
<td>Free / Online storage free up to 2 GB / Additional storage space available</td>
<td>No</td>
</tr>
<tr>
<td>colwiz</td>
<td>colwiz Ltd</td>
<td>2011</td>
<td>2016-05-09</td>
<td></td>
<td>Free / Online storage free up to 3 GB / Additional storage space available</td>
<td>No</td>
</tr>
<tr>
<td>ReadCube</td>
<td>LaBtiva</td>
<td>2011-10</td>
<td>2016-09-20</td>
<td>v2.22.13732</td>
<td>Free desktop & mobile app / Cloud Storage $5/month, $55/year</td>
<td>No</td>
</tr>
<tr>
<td>Qiqqa</td>
<td>Qiqqa</td>
<td>2010-04</td>
<td>2016-09</td>
<td>v79</td>
<td>Free, Freemium and Premium versions</td>
<td>No</td>
</tr>
<tr>
<td>F1000Workspace</td>
<td>F1000/Science Navigation Group</td>
<td>2015-05</td>
<td>Continually updated online</td>
<td></td>
<td>Institutional access – varies with size of institute / Personal subscription $9.99/month / Free Trial Version</td>
<td>No</td>
</tr>
<tr>
<td>Reference Manager</td>
<td>Thomson Reuters</td>
<td>1984</td>
<td>2010</td>
<td>12.0.3</td>
<td>Not for sale anymore, sales ceased December 31, 2015</td>
<td>No</td>
</tr>
<tr>
<td>RefWorks</td>
<td>RefWorks / ProQuest</td>
<td>2001-00</td>
<td>2013</td>
<td>10.3.1</td>
<td>US$100 per year</td>
<td>No</td>
</tr>
<tr>
<td>Paperpile</td>
<td>Stefan Wachtel, Gregory Jordan, Andreas Gruber</td>
<td>2013</td>
<td>Continually updated online</td>
<td></td>
<td>US$2.99/month for academics, 9.99/month otherwise</td>
<td>No</td>
</tr>
<tr>
<td>EndNote</td>
<td>Clarivate Analytics</td>
<td>1988</td>
<td>2017-07-19</td>
<td>X:8.0.2</td>
<td>US$299.95[1]</td>
<td>No</td>
</tr>
</tbody>
</table>
Research Data Management (planning)

- If you needed to locate (or share) your data files from or in 5-10 yrs, how easy would they be to find and use?

- If you were to share your data with another researcher would they be able to make sense of your data? (now or in the future)

- If a funding agency asked for your research data management plan could you provide one?
major players in Canada

Canadian Association of Research Libraries-CARL
Literature

“...direct effect of third-party data reuse that persists for years...”
Data availability goes beyond “evaluation metrics or citation benefits...”

PeerJ 1:e175 https://doi.org/10.7717/peerj.175

“...some use is found for shared life sciences data...”

Aslib Journal of Information Management, 69(1) p.36-45, https://doi.org/10.1108/AJIM-09-2016-0159
Research Data Management Plans (and the data itself) can...

- satisfy grant & journal requirements
- ensure data access and longevity
- endorse scholarly rigor
- increase research efficiency
- raise researcher(s) profile(s)
- promote collaboration & maximize transparency
- promote inquiry and innovation
- increase impact of research
- provide greater resources for education and training
Summary

• Follow the citation / reference trail

• utilize Biology dictionaries / encyclopaedias

• decide upon Citations / References software

• think about Research Data Management Planning

• Ask for assistance